Ohio State Researcher Using Supercomputing to Halt Breast and Prostate Cancer

Print Friendly, PDF & Email

An Ohio State biophysicist is using HPC to search thousands of molecular combinations for the best configuration to block a protein that can cause breast or prostate cancer.

Chenglong Li, Ph.D., an assistant professor of medicinal chemistry and pharmacognosy at The Ohio State University (OSU), is leveraging a powerful computer cluster at the Ohio Supercomputer Center (OSC) to develop a drug that will block the small protein molecule Interleukin-6 (IL-6). The body normally produces this immune-response messenger to combat infections, burns, traumatic injuries, etc. Scientists have found, however, that in people who have cancer, the body fails to turn off the response and overproduces IL-6.

“We proposed using computational intelligence to re-engineer a new set of compounds that not only preserve the original properties, but also would be more potent and efficient,” Li said. “Our initial feasibility study pointed to compounds with a high potential to be developed into a non-toxic, orally available drug.”

Using the AMBER application, Li accessed 64 nodes of OSC’s Glenn IBM 1350 Opteron cluster to simulate IL-6 and the two additional helper proteins needed to convey the signal: the receptor IL-6R and the common signal-transducing receptor GP130. Two full sets of the three proteins combine to form a six-sided molecular machine, or “hexamer,” that transmits the signals that will, in time, cause cellular inflammation and, potentially, cancer. Read the Full Story.

Ed note: We try to spend a lot of time here at insideHPC conveying why supercomputing is so important to our society. But sometimes stories like this one really bring it home for me. Cancer touched my life recently and I feel very fortunate to be in a position to share these kinds of stories.