Oak Ridge Supers Demystify the Harnessing of Fusion Energy

Print Friendly, PDF & Email

Over at the Joint Institute for Computational Sciences, Scott Gibson writes that researchers have made a significant breakthrough in fusion energy research using supercomputers at ORNL. A multi-institutional team led by Predrag S. Krstic of the JICS and Jean Paul Allain of Purdue University has answered the question of how the behavior of plasma—the extremely hot gases of nuclear fusion—can be controlled with ultra-thin lithium films on graphite walls lining thermonuclear magnetic fusion devices.

How lithium coatings on graphite surfaces control plasma behavior has largely remained a mystery until our team was able to combine predictions from quantum-mechanical supercomputer simulations on the Kraken and Jaguar systems at Oak Ridge National Laboratory and in situ experimental results from the Purdue group to explain the causes of the delicate tunability of plasma behavior by a complex lithiated graphitic system,” Krstic said. “Surprisingly, we find that the presence of oxygen in the surface plays the key role in the bonding of deuterium, while lithium’s main role is to bring the oxygen to the surface. Deuterium atoms preferentially bind with oxygen and carbon-oxygen when there is a comparable amount of oxygen to lithium at the surface. That finding well matches a number of controversial experimental results obtained within the last decade.”

Read the Full Story.