Sign up for our newsletter and get the latest HPC news and analysis.
Send me information from insideHPC:

Supercomputing Drone Aerodynamics

In this video, researchers at NASA Ames explore the aerodynamics of a popular example of a small, battery-powered drone, a modified DJI Phantom 3 quadcopter. “The Phantom relies on four whirring rotors to generate enough thrust to lift it and any payload it’s carrying off the ground. Simulations revealed the complex motions of air due to interactions between the vehicle’s rotors and X-shaped frame during flight. As an experiment, researchers added four more rotors to the vehicle to study the effect on the quadcopter’s performance. This configuration produced a nearly twofold increase in the amount of thrust.”

Video: Lenovo Powers Manufacturing Innovation at Hartree Centre

“STFC Hartree Centre needed a powerful, flexible server system that could drive research in energy efficiency as well as economic impact for its clients. By extending its System x platform with NeXtScale System, Hartree Centre can now move to exascale computing, support sustainable energy use and help its clients gain a competitive advantage.” Sophisticated data processes are now integral to all areas of research and business. Whether you are new to discovering the potential of supercomputing, data analytics and cognitive techniques, or are already using them, Hartree’s easy to use portfolio of advanced computing facilities, software tools and know-how can help you create better research outcomes that are also faster and cheaper than traditional research methods.

Video: Livermore HPC Takes Aim at Cancer

In this video, Jonathan Allen from LLNL describes how Lawrence Livermore’s supercomputers are playing a crucial role in advancing cancer research and treatment. “A historic partnership between the Department of Energy (DOE) and the National Cancer Institute (NCI) is applying the formidable computing resources at Livermore and other DOE national laboratories to advance cancer research and treatment. Announced in late 2015, the effort will help researchers and physicians better understand the complexity of cancer, choose the best treatment options for every patient, and reveal possible patterns hidden in vast patient and experimental data sets.”

Understanding Cities through Computation, Data Analytics, and Measurement

“For many urban questions, however, new data sources will be required with greater spatial and/or temporal resolution, driving innovation in the use of sensors in mobile devices as well as embedding intelligent sensing infrastructure in the built environment. Collectively, these data sources also hold promise to begin to integrate computational models associated with individual urban sectors such as transportation, building energy use, or climate. Catlett will discuss the work that Argonne National Laboratory and the University of Chicago are doing in partnership with the City of Chicago and other cities through the Urban Center for Computation and Data, focusing in particular on new opportunities related to embedded systems and computational modeling.”

Intel HPC Orchestrator Powers Research at University of Pisa

In this video, Maurizio Davini from the University of Pisa describe how the University works with Dell EMC and Intel to test new technologies, integrate and optimize HPC systems with Intel HPC Orchestrator software. “We believe these two companies are at the forefront of innovation in high performance computing,” said University CTO Davini. “We also share a common goal of simplifying HPC to support a broader range of users.”

Video: Diversity and Inclusion in Supercomputing

Dr. Maria Klawe gave this Invited Talk at SC16. “Like many other computing research areas, women and other minority groups are significantly under-represented in supercomputing. This talk discusses successful strategies for significantly increasing the number of women and students of color majoring in computer science and explores how these strategies might be applied to supercomputing.”

Video: How an Exoplanet Makes Waves

In this video, a new NASA supercomputer simulation depicts the planet and debris disk around the nearby star Beta Pictoris reveals that the planet’s motion drives spiral waves throughout the disk, a phenomenon that greatly increases collisions among the orbiting debris. Patterns in the collisions and the resulting dust appear to account for many observed features that previous research has been unable to fully explain.

Reflecting on the Goal and Baseline for Exascale Computing

Thomas Schulthess from CSCS gave this Invited Talk at SC16. “Experience with today’s platforms show that there can be an order of magnitude difference in performance within a given class of numerical methods – depending only on choice of architecture and implementation. This bears the questions on what our baseline is, over which the performance improvements of Exascale systems will be measured. Furthermore, how close will these Exascale systems bring us to deliver on application goals, such as kilometer scale global climate simulations or high-throughput quantum simulations for materials design? We will discuss specific examples from meteorology and materials science.”

Dell EMC Powers HPC at University of Connecticut

The University of Connecticut has partnered with Dell EMC and Intel to create a high performance computing cluster that students and faculty can use in their research. With this HPC Cluster, UConn researchers can solve problems that are computationally intensive or involve massive amounts of data in a matter of days or hours, instead of weeks. The HPC cluster operated on the Storrs campus features 6,000 CPU cores, a high-speed fabric interconnect, and a parallel file system. Since 2011, it has been used by over 500 researchers, from each of the university’s schools and colleges, for over 40 million hours of scientific computation.

Video: Azure High Performance Computing

“Run your Windows and Linux HPC applications using high performance A8 and A9 compute instances on Azure, and take advantage of a backend network with MPI latency under 3 microseconds and non-blocking 32 Gbps throughput. This backend network includes remote direct memory access (RDMA) technology on Windows and Linux that enables parallel applications to scale to thousands of cores. Azure provides you with high memory and HPC-class CPUs to help you get results fast. Scale up and down based upon what you need and pay only for what you use to reduce costs.”