Sign up for our newsletter and get the latest HPC news and analysis.
Send me information from insideHPC:


Jülich Installs New QPACE3 Supercomputer for Quantum Chromodynamics

A new supercomputer has been deployed at the Jülich Supercomputing Center (JSC) in Germany. Called QPACE3, the new 447 Teraflop machine is named for “QCD Parallel Computing on the Cell. “QPACE3 is being used by the University of Regensburg for a joint research project with the University of Wuppertal and the Jülich Supercomputing Center for numerical simulations of quantum chromodynamics (QCD), which is one of the fundamental theories of elementary particle physics. Such simulations serve, among other things, to understand the state of the universe shortly after the Big Bang, for which a very high computing power is required.”

Oakforest-PACS: Overview of the Fastest Supercomputer in Japan

Prof. Taisuke Boku from the University of Tsukuba & JCAHPC presented this talk at the DDN User Group at SC16. “Thanks to DDN’s IME Burst Buffer, researchers using Oakforest-PACS at the Joint Center for Advanced High Performance Computing (JCAHPC) are able to improve modeling of fundamental physical systems and advance understanding of requirements for Exascale-level systems architectures. With DDN’s advanced technology, JCAHPC has achieved effective I/O performance exceeding 1TB/s in writing tens of thousands of processes to the same file.”

Fujitsu Starts of Operations for Japan’s Fastest Supercomputer

Today Fujitsu today announced the completion of the Oakforest-PACS supercomputer at the Joint Center for Advanced High Performance Computing (JCAHPC), which is jointly run by the University of Tokyo and the University of Tsukuba, and that operations have commenced today. This new supercomputer is comprised of FUJITSU Server PRIMERGY CX600 M1 x86 servers. It uses […]

Asetek Lands Nine Installations on the Green500

“As seen at installations included on both the Green500 and Top500 lists, Asetek’s distributed liquid cooling architecture enables cluster energy efficiency in addition to sustained and un-throttled cluster performance,” said John Hamill, Vice President of WW Sales and Marketing. “Around the world, data centers are increasingly using Asetek technology for High Performance Computing while reducing energy costs.”

Asetek Liquid Cooling Delivers Savings and Flexibility for HPC

In this video from SC16, Steve Branton from Asetek describes the company’s innovative liquid cooling systems for high performance computing. Unlike one-size-fits-all approaches, the flexibility of Asetek distributed liquid cooling technology enables OEMs to provide a fit-to-need strategy that is compelling to the elite members of the supercomputing community. “With the accelerating trend of higher wattages and the continuing requirement of high density, the need for adaptable, cost effective, and reliable liquid cooling is accelerating among those striving to obtain TOP500 status. This need is exactly what Asetek’s distributed cooling architecture provides.”

Radio Free HPC Reviews the New TOP500

The new TOP500 list is out, and Rad is Free HPC is here podcasting the scoop in their own special way. With two new systems in the TOP10, there are many different perspectives to share. “The Cori supercomputer, a Cray XC40 system installed at Berkeley Lab’s National Energy Research Scientific Computing Center (NERSC), slipped into the number 5 slot with a Linpack rating of 14.0 petaflops. Right behind it at number 6 is the new Oakforest-PACS supercomputer, a Fujitsu PRIMERGY CX1640 M1 cluster, which recorded a Linpack mark of 13.6 petaflops.”

Fujitsu Develops New Architecture for Combinatorial Optimization

Today Fujitsu Laboratories announced a collaboration with the University of Toronto to develop a new computing architecture to tackle a range of real-world issues by solving combinatorial optimization problems that involve finding the best combination of elements out of an enormous set of element combinations. “This architecture employs conventional semiconductor technology with flexible circuit configurations to allow it to handle a broader range of problems than current quantum computing can manage. In addition, multiple computation circuits can be run in parallel to perform the optimization computations, enabling scalability in terms of problem size and processing speed.”

Video: Japan’s Post K Computer

Yutaka Ishikawa from Riken AICS presented this talk at the HPC User Forum. “Slated for delivery sometime around 2022, the ARM-based Post-K Computer has a performance target of being 100 times faster than the original K computer within a power envelope that will only be 3-4 times that of its predecessor. RIKEN AICS has been appointed as the main organization for leading the development of the Post-K.”

Fujitsu Cluster to Power Super-Kamiokande Neutrino Experiments

Today Fujitsu announced that the company has received an order for an experiment-analysis system from Kamioka Observatory, part of the Institute for Cosmic Ray Research (ICRR) at the University of Tokyo. The system is destined for Kamioka Observatory’s Super-Kamiokande facility, which is helping to shed light on the workings of the universe through the observation of neutrinos, and is scheduled to go operational in March 2017.

PRIMEHPC FX10 Fujitsu Supercomputer

Fujitsu developed the first Japanese supercomputer in 1977. In the thirty-plus years since then, we have been leading the development of supercomputers with the application of advanced technologies. We now introduce the PRIMEHPC FX10, a state-of-the-art supercomputer that makes the petascale computing achieved by the “K computer”(*1) more accessible.