Sign up for our newsletter and get the latest HPC news and analysis.
Send me information from insideHPC:


Intel® VTune™ Amplifier Turns Raw Profiling Data Into Performance Insights

Discovering where the performance bottlenecks are and knowing what to do about it can be a mysterious and complex art, needing some very sophisticated performance analysis tools for success. That’s where Intel® VTune™ Amplifier XE 2017, part of Intel Parallel Studio XE, comes in.

Intel MKL and Intel TBB Working Together for Performance

When used in a TBB environment, Intel has demonstrated a many-fold performance improvement over the same parallelized code using Intel MKL in an OpenMP environment. Intel TBB-enabled Intel MKL is ideal when there is heavy threading in the Intel TBB application. Intel TBB-enabled Intel MKL shows solid performance improvements through better interoperability with other parts of the workload.

Creating Applications with the Intel Computer Vision SDK

“In order for developers to be able to focus on their application, a Vision Algorithm Designer application is included in the Intel Computer Vision SDK. This gives users a drag and drop interface that allows them to create new applications on the fly. Large and complex workflows can be modelled visually which takes the guesswork out of bringing together many different functions. In addition, customized code can be added to the workflows.”

Intel MPI Library 2017 Focuses on Intel Multi-core/Many-Core Clusters

With the release of Intel Parallel Studio XE 2017, the focus is on making applications perform better on Intel architecture-based clusters. Intel MPI Library 2017, a fully integrated component of Intel Parallel Studio XE 2017, implements the high-performance MPI-3.1 specification on multiple fabrics. It enables programmers to quickly deliver the best parallel performance, even if you change or upgrade to new interconnects, without requiring changes to the software or operating environment.

Intel DAAL Accelerates Data Analytics and Machine Learning

Intel DAAL is a high-performance library specifically optimized for big data analysis on the latest Intel platforms, including Intel Xeon®, and Intel Xeon Phi™. It provides the algorithmic building blocks for all stages in data analysis in offline, batch, streaming, and distributed processing environments. It was designed for efficient use over all the popular data platforms and APIs in use today, including MPI, Hadoop, Spark, R, MATLAB, Python, C++, and Java.

Six Steps Towards Better Performance on Intel Xeon Phi

“As with all new technology, developers will have to create processes in order to modernize applications to take advantage of any new feature. Rather than randomly trying to improve the performance of an application, it is wise to be very familiar with the application and use available tools to understand bottlenecks and look for areas of improvement.”

Intel Releases Optimized Python for HPC

“By implementing popular Python packages such as NumPy, SciPy, scikit-learn, to call the Intel Math Kernel Library (Intel MKL) and the Intel Data Analytics Acceleration Library (Intel DAAL), Python applications are automatically optimized to take advantage of the latest architectures. These libraries have also been optimized for multithreading through calls to the Intel Threading Building Blocks (Intel TBB) library. This means that existing Python applications will perform significantly better merely by switching to the Intel distribution.”

Vectorization Leads to Performance Gains

Applications that can take advantage of the new vectorization capabilities of the Intel Xeon Phi processor will show tremendous performance gains. “When considering vectorization, there are different tools that can assist the developer in determining where to look further. The first is to look at the optimization reports that are generated by the Intel compiler and then to also use the Vector Analyzer that can give specific advice on what to do to get more vectorization from the code.”

Achieving High-Performance Math Processing with Intel MKL 2017

“Many of the libraries developed in the 70s and 80s for core linear algebra and scientific math computation, such as BLAS, LAPACK, FFT, are still in use today with C, C++, Fortran, and even Python programs. With MKL, Intel has engineered a ready-to-use, royalty-free library that implements these numerical algorithms optimized specifically to take advantage of the latest features of Intel chip architectures. Even the best compiler can’t compete with the level of performance possible from a hand-optimized library. Any application that already relies on the BLAS or LAPACK functionality will achieve better performance on Intel and compatible architectures just by downloading and re-linking with Intel MKL.”

Managing Lots of Tasks for Intel Xeon Phi

“OpenMP, Fortran 2008 and TBB are standards that can help to create parallel areas of an application. MKL could also be considered to be part of this family, because it uses OpenMP within the library. OpenMP is well known and has been used for quite some time and is continues to be enhanced. Some estimates are as high as 75 % of cycles used are for Fortran applications. Thus, in order to modernize some of the most significant number crunchers today, Fortran 2008 should be investigated. TBB is for C++ applications only, and does not require compiler modifications. An additional benefit to using OpenMP and Fortran 2008 is that these are standards, which allows code to be more portable.”