Sign up for our newsletter and get the latest HPC news and analysis.
Send me information from insideHPC:


Managing Lots of Tasks for Intel Xeon Phi

“OpenMP, Fortran 2008 and TBB are standards that can help to create parallel areas of an application. MKL could also be considered to be part of this family, because it uses OpenMP within the library. OpenMP is well known and has been used for quite some time and is continues to be enhanced. Some estimates are as high as 75 % of cycles used are for Fortran applications. Thus, in order to modernize some of the most significant number crunchers today, Fortran 2008 should be investigated. TBB is for C++ applications only, and does not require compiler modifications. An additional benefit to using OpenMP and Fortran 2008 is that these are standards, which allows code to be more portable.”

MIT Lincoln Laboratory Takes the Mystery Out of Supercomputing

“Many supercomputer users, like the big DOE labs, are implementing these next generation systems. They are now engaged in significant code modernization efforts to adapt their key present and future applications to the new processing paradigm, and to bring their internal and external users up to speed. For some in the HPC community, this creates unanticipated challenges along with great opportunities.”

Dell EMC Powers Summit Supercomputer at CU Boulder

“The University of Colorado, Boulder supports researchers’ large-scale computational needs with their newly optimized high performance computing system, Summit. Summit is designed with advanced computation, network, and storage architectures to deliver accelerated results for a large range of HPC and big data applications. Summit is built on Dell EMC PowerEdge Servers, Intel Omni-Path Architecture Fabric and Intel Xeon Phi Knights Landing processors.”

IA Optimized Python Rocks in Production

“Intel recently announced the first product release of its High Performance Python distribution powered by Anaconda. The product provides a prebuilt easy-to-install Intel Architecture (IA) optimized Python for numerical and scientific computing, data analytics, HPC and more. It’s a free, drop in replacement for existing Python distributions that requires no changes to Python code. Yet benchmarks show big Intel Xeon processor performance improvements and even bigger Intel Xeon Phi processor performance improvements.”

Dell & Intel Collaborate on CryoEM on Intel Xeon Phi

In this video from SC16, Janet Morss from Dell EMC and Hugo Saleh from Intel discuss how the two companies collaborated on accelerating CryoEM. “Cryo-EM allows molecular samples to be studied in near-native states and down to nearly atomic resolutions. Studying the 3D structure of these biological specimens can lead to new insights into their functioning and interactions, especially with proteins and nucleic acids, and allows structural biologists to examine how alterations in their structures affect their functions. This information can be used in system biology research to understand the cell signaling network which is part of a complex communication system.”

Building for the Future Aurora Supercomputer at Argonne

“Argonne National Labs has created a process to assist in moving large applications to a new system. Their current HPC system, Mira will give way to the next generation system, Aurora, which is part of the collaboration of Oak Ridge, Argonne, and Livermore (CORAL) joint procurement. Since Aurora contains technology that was not available in Mira, the challenge is to give scientists and developers access to some of the new technology, well before the new system goes online. This allows for a more productive environment once the full scale new system is up.”

Jülich Installs New QPACE3 Supercomputer for Quantum Chromodynamics

A new supercomputer has been deployed at the Jülich Supercomputing Center (JSC) in Germany. Called QPACE3, the new 447 Teraflop machine is named for “QCD Parallel Computing on the Cell. “QPACE3 is being used by the University of Regensburg for a joint research project with the University of Wuppertal and the Jülich Supercomputing Center for numerical simulations of quantum chromodynamics (QCD), which is one of the fundamental theories of elementary particle physics. Such simulations serve, among other things, to understand the state of the universe shortly after the Big Bang, for which a very high computing power is required.”

Podcast: Intel Doubles Down on Artificial Intelligence

In this Chip Chat podcast, Diane Bryant, EVP/GM for the Data Center Group at Intel, discusses how the company is driving the future of artificial intelligence by delivering breakthrough performance from best-in-class silicon, democratizing access to technology, and fostering beneficial uses of AI. Bryant also outlines her vision for AI’s ability to fundamentally transform the way businesses operate and people engage with the world. In a blog Krzanich said: “Intel is uniquely capable of enabling and accelerating the promise of AI. Intel is committed to AI and is making major investments in technology and developer resources to advance AI for business and society.”

Speed Your Application with Threading Building Blocks

With modern processors that contain a large number of cores, to get maximum performance it is necessary to structure an application to use as many cores as possible. Explicitly developing a program to do this can take a significant amount of effort. It is important to understand the science and algorithms behind the application, and then use whatever programming techniques that are available. “Intel Threaded Building Blocks (TBB) can help tremendously in the effort to achieve very high performance for the application.”

Supermicro Showcases Versatile HPC Solutions at SC16

In this video from SC16, Don Clegg from Supermicro describes the company’s broad range of HPC solutions. “Innovation is at the core of Supermicro product development and benefits the HPC community with first-to-market integration of advanced technology such as our 1U with four and 4U with eight Pascal P100 SXM2 GPUs or 4U with ten PCI-e GPU systems, hot-swap U.2 NVMe, upcoming fabric technologies like Red Rock Canyon and PCI-E switches, as well as new architecture designs like our new high-density BigTwin system design.”