Sign up for our newsletter and get the latest HPC news and analysis.
Send me information from insideHPC:


Intel Advisor Roofline Analysis Finds New Opportunities for Optimizing Application Performance

Intel Advisor, an integral part of Intel Parallel Studio XE 2017, can help identify portions of code that could be good candidates for parallelization (both vectorization and threading). It can also help determine when it might not be appropriate to parallelize a section of code, depending on the platform, processor, and configuration it’s running on. Intel Advisor Roofline Analysis reveals the gap between an application’s performance and its expected performance.

Intel® VTune™ Amplifier Turns Raw Profiling Data Into Performance Insights

Discovering where the performance bottlenecks are and knowing what to do about it can be a mysterious and complex art, needing some very sophisticated performance analysis tools for success. That’s where Intel® VTune™ Amplifier XE 2017, part of Intel Parallel Studio XE, comes in.

Design Optimization for HPC Clusters

Advanced simulation software can dramatically shorten the design phase by allowing engineers to virtually optimize and validate new ideas earlier in the process, minimizing the expense of building physical prototypes and streamlining real-world testing.

OpenMP and OpenCL on Intel Xeon Phi

“In a heterogeneous system that combines both the Intel Xeon CPU and the Intel Xeon Phi coprocessor, there are various options available to optimize applications. Whether one has an advantage over another is somewhat dependent on the application that is being run. Comparisons can be made comparing the two methods, as long as the algorithm lends itself to run and take advantage of either OpenMP or OpenCL.”

Direct N-Body Simulation

In some domains, an N-Body simulation is key to solving for the movement and forces of a dynamic system of particles. At each time step, the force that one body exacts on each other, and then the velocity can be computed. The simulation can continue up to a desired number of time steps.