Sign up for our newsletter and get the latest HPC news and analysis.
Send me information from insideHPC:

Introduction to Parallel Programming with OpenACC

“This is the first in a series of short videos to introduce you to parallel programming with OpenACC and the PGI compilers, using C++ or Fortran. You will learn by example how to build a simple example program, how to add OpenACC directives, and to rebuild the program for parallel execution on a multicore system. To get the most out of this video, you should download the example programs and follow along on your workstation.”

Minimal Metrics Releases PerfMiner Parallel Optimization Tool

This week Minimal Metrics announced an early-adopter program for PerfMiner, which uses lightweight, and pervasive performance data collection technology, automates its collection, and mines the data for key performance indicators. These indicators were developed through Minimal Metrics’ extensive experience tuning HPC and enterprise application performance, presented in an audience-specific, drill-down hierarchy that provides accountability for site productivity down to the performance of individual application threads.

PRIMEHPC FX10 Fujitsu Supercomputer

Fujitsu developed the first Japanese supercomputer in 1977. In the thirty-plus years since then, we have been leading the development of supercomputers with the application of advanced technologies. We now introduce the PRIMEHPC FX10, a state-of-the-art supercomputer that makes the petascale computing achieved by the “K computer”(*1) more accessible.

Parallel Storage Solutions for Better Performance

Using high performance parallel storage solutions, geologists and researchers can now incorporate larger data sets and execute more seismic and reservoir simulations faster than ever before, enabling higher fidelity geological analysis and significantly reduced exploration risk. With high costs of exploration, oil and gas companies are increasingly turning to high performance DDN storage solutions to eliminate I/O bottlenecks, minimize risk and costs, while delivering a larger number of higher fidelity simulations in same time as traditional storage architectures.

SAS Analytics Using Direct Memory Access

Using Remote Direct Memory Access based analytics and fast, scalable,external disk systems with massively parallel access to data, SAS analytics driven organizations can deliver timely and accurate execution for data intensive workflows such as risk management, while incorporating larger datasets than using traditional NAS.

Cilk Plus from Intel Offers Easy Access to Performance

Intel® Cilk™ Plus is an extension to C and C++ that offers a quick and easy way to harness the power of both multicore and vector processing. The three Intel Cilk Plus keywords provide a simple yet surprisingly powerful model for parallel programming, while runtime and template libraries offer a well-tuned environment for building parallel applications.

Basics For Coprocessors

“The Intel Xeon Phi coprocessor is an example of a many core system that can greatly increase the performance of an application when used correctly. Simply taking a serial application and expecting tremendous performance gains will not happen. Rewriting parts of the application will be necessary to take advantage of the architecture of the Intel Xeon Phi coprocessor.”

Code Modernization for High Performance Hardware

“Parallel software and parallel hardware, used together will give the best results for an application. If the application is serial in nature, and the processor is serial, then there will obviously not be a great gain in performance. When the application is parallelized, but the processor is serial, again, no great gain. A third combination is when the application is serial and the processing is parallel. Since the application cannot take advantage of the increased power of the hardware, there will not be a great performance boost. The best and really only solution is to modify the application to run in parallel, using high performing parallel hardware.”

Stepping up to the performance challenge

The performance-savvy HPC developer is in high demand today. Leaps in intra-node parallelism, memory performance and capacity are set to meet applications struggling to exploit existing systems head-on.

Out of Core Solvers on a Cluster

One of the most used algorithms in numerical simulation is the solving of large, dense matrices. Thermal analysis, boundary element methods and electromagnetic wave calculations all depend on the ability to solve these large matrices as fast as possible. The ability to use a coprocessor such as the Intel Xeon Phi coprocessor will greatly speed up these calculations.