Supercomputing the Clues to Hotspot Volcanos

Print Friendly, PDF & Email

This 3D view of the top 1,000 kilometers of Earth’s mantle beneath the central Pacific shows the relationship between seismically-slow “plumes” and channels imaged in the UC Berkeley study.

Over at NERSC, Linda Vu writes that researchers are using supercomputers at to detect previously unknown channels of slow-moving seismic waves in Earth’s upper mantle. This discovery helps to explain how “hotspot volcanoes”—the kind that give birth to island chains like Hawaii and Tahiti—come to exist.

The researchers from UC Berkeley and University of Maryland found these channels by analyzing seismic wave data from about 200 earthquakes using highly accurate computer simulations of how these waves travel through the Earth’s mantle— the layer found between the planet’s crust and core. These analyses allowed them to make inferences about the structure of convection in the mantle, which is responsible for carrying heat from the planet’s interior to the surface to create hotspot volcanoes. Their paper was published in a recent issue of Science.

We now have a clearer picture that can help us understand the ‘plumbing’ of Earth’s mantle responsible for hotspot Volcano Islands like Tahiti and Samoa,” says Scott French, a UC Berkeley Graduate Student and lead author on the paper.

French notes that it is only within the last five years researchers have had access to the computing technology to simulate the entire planet’s response to one earthquake using numerical simulations. “One simulation of one earthquake takes about 144 computer processor hours on NERSC’s Hopper system,” says French. “But we needed to run this simulation for 200 individual earthquakes to get an accurate seismic model. Our model improves with each run.”

Read the Full Story.