UW Projects Awarded 42 Million Core Hours on Yellowstone Supercomputer

Print Friendly, PDF & Email

yellowstoneSeven projects were recently chosen to receive 42 million core hours of computational time on NCAR’s Yellowstone supercomputer in Cheyenne, Wyoming. The NWSC contains one of the world’s most powerful supercomputers dedicated to improving scientific understanding of climate change, severe weather, air quality and other vital atmospheric science and geo-science topics. The center also houses a premier data storage and archival facility that holds historical climate records and other information.

Yellowstone comprises more than 70,000 cores. An allocation of one core hour allows a project to run one of these processors for one hour, or 1,000 of these for 1/1,000th of an hour.

A new supercomputer, dubbed Cheyenne, is expected to be operational at the beginning of 2017. The new high-performance computer will be a 5.34-petaflop system, meaning it can carry out 5.34 quadrillion calculations per second. It will be capable of more than 2.5 times the amount of scientific computing performed by Yellowstone.

Twenty-five UW-led projects used Yellowstone in 2015, which places Wyoming as the top university in total allocations, users and usage among all universities that use the NWSC. Since the supercomputer came on line during October 2012, allocations have been made to 42 UW research projects, including these latest seven, which commenced this month.

The newest projects, with a brief description and principal investigators, are as follows:

  • “Climate Change Impacts on Precipitation and Snowpack in Wyoming Using a Dynamical Downscaling Method with CCSM Bias Corrections” is funded by the UW Office of Water Program. This on-going project will use modeling to study how trends in regional climate affect precipitation, snowpack dynamics and stream flow in the headwaters region surrounding Wyoming.
    Bart Geerts, a UW professor of atmospheric science, heads the project. Collaborators include Yonggang Wang, a UW post-doctoral scientist; Changhai Liu, from NCAR’s Research Applications Laboratory; and Xiaoqin Jing, a UW doctoral student.
  • “WRF Non-LES and LES Simulations of the Cloud Microphysical Effects of Ground-Based Glaciogenic Seeding of Orographic Clouds” will study the impact of ice-crystal seeding on clouds and precipitation over mountains in the Interior West. The project will use data from a 2008-2014 seeding project in Wyoming, and the power of computational simulations to help guide an NSF-funded cloud seeding campaign to begin in early 2017.
    Geerts also heads this project. Collaborators are Jeff French, a UW assistant professor of atmospheric science; Lulin Xue, a project scientist with NCAR’s Research Applications Lab; and Xiu Chu, a UW doctoral student. The project is funded through an ongoing NSF grant with Roy Rasmussen and Dan Breed, both with NCAR; and a pending NSF grant with French and Robert Rauber, a professor and head of the Department of Atmospheric Sciences at the University of Illinois-Urbana Champaign.
  • “Surface Phase Behavior of Hydrocarbon Mixtures in Natural Mineral Media” will look at oil production from both conventional and unconventional reservoirs, and how it can be highly dependent on mineral-fluid interfacial phenomena. This project will undertake a series of simulations aimed at elucidating hydrocarbon/mineral interactions under reservoir conditions with a focus on the effects of fluid composition, surface roughness, and brine salinity on dynamic surface wettability in carbonate systems.
    Lamia Gaoul, an adjunct professor in UW’s School of Energy Resources (SER), leads the project. Collaborators are Mohammad Piri, the Wyoming Excellence Chair in Petroleum Engineering and a UW professor of petroleum engineering in the SER; and Will Welch, a post-doctoral researcher in petroleum engineering.
  • “Modeling Planet/Disk Interactions to Understand Planet Formation” is motivated by the challenge to determine how exoplanets (that is, planets that orbit stars other than the sun) form. Disks of gases and debris around young stars hold vital clues to exoplanet formation. By creating a library of simulated images of a range of disks, Hannah Jang-Condell, a UW assistant professor of physics and astronomy, hopes to be able to determine properties of real disks by comparing capture images with simulated images.
    Jang-Condell heads the project that is funded by the NASA Exoplanet Research Program.
  • “Effect of Microscale Phenomena on Macroscale Events” will enable Zac Lebo, a new UW faculty member, to pursue his research on cloud systems. Cloud formation is one of the key components that governs Earth’s atmosphere. Yet, basic questions about cloud formation remain unanswered. Lebo, a UW assistant professor of atmospheric science, will develop models and algorithms to better understand how changes in objects and processes (aerosols and nucleation) that can’t be seen can influence phenomena – clouds and weather — that affect everyday life.
    Project collaborators are Ben Shipway and Adrian Hill, both from the UK Meteorological Office; and Hugh Morrison from NCAR. The project is funded through start-up funds from UW’s Office of Research and Economic Development.
  • “High-Resolution Climate Simulations and Future Climate Projections in the Rocky Mountain Region (RMR) Using the Variable-Resolution CESM (VR-CESM)” will assess the performance of the variable-resolution NCAR Community Earth System Model (VR-CESM) in simulating the regional climate in the RMR. In addition, the role of deposition of absorbing aerosols (black carbon, organic carbon and dust) on snow, and the impact of future climate variations on the hydrologic cycles in the RMR, will be investigated. Xiaohong Liu, the Wyoming Excellence Chair in Climate Science and a professor of atmospheric science, is the project leader. Collaborators are Geerts and Jianting “Julian” Zhu, a UW associate professor of civil engineering; Andrew Gettleman and Colin Zarxycki, both from NCAR; and UW doctoral students Chenglai Wu and Zheng Lu. The project is funded through a College of Engineering and Applied Science grant.
  • “Computational Study of Wind Turbine Performance and Loading Response to Turbulent Atmospheric Inflow Conditions” will allow a UW research team to further develop, validate and employ a suite of software tools and models to predict performance of wind farms consisting of hundreds to thousands of turbines. The models will account for spatial and temporal scales over eight orders of magnitude — from the continental scales that govern wind patterns to the thin boundary layers over the wind turbine blades.

Dimitri Mavriplis, a UW professor of mechanical engineering, is the project lead. Collaborators are Michael Stoellinger, a UW assistant professor of mechanical engineering; Tom Parish, department head and a UW professor of atmospheric science; and Jon Naughton, a UW professor of mechanical engineering.
Funding is provided through a U.S. Department of Energy grant secured by Naughton.

The NWSC is the result of a partnership among the University Corporation for Atmospheric Research (UCAR), the operating entity for NCAR; UW; the state of Wyoming; Cheyenne LEADS; the Wyoming Business Council; and Cheyenne Light, Fuel & Power. The NWSC is operated by NCAR under sponsorship of the NSF.

Sign up for our insideHPC Newsletter