CUDA Made Easy: An Introduction

Mark Harris, Chief Technologist for GPU Computing at Nvidia

Over at the Nvidia blog, Mark Harris has posted a simple introduction to CUDA, the popular parallel computing platform and programming model from NVIDIA.

I wrote a previous “Easy Introduction” to CUDA in 2013 that has been very popular over the years. But CUDA programming has gotten easier, and GPUs have gotten much faster, so it’s time for an updated (and even easier) introduction. CUDA C++ is just one of the ways you can create massively parallel applications with CUDA. It lets you use the powerful C++ programming language to develop high performance algorithms accelerated by thousands of parallel threads running on GPUs. Many developers have accelerated their computation- and bandwidth-hungry applications this way, including the libraries and frameworks that underpin the ongoing revolution in artificial intelligence known as Deep Learning.

To follow along this guide, you’ll need a computer with an CUDA-capable GPU (Windows, Mac, or Linux, and any NVIDIA GPU should do), or a cloud instance with GPUs (AWS, Azure, IBM SoftLayer, and other cloud service providers have them). You’ll also need the free CUDA Toolkit installed.

Mark Harris is Chief Technologist for GPU Computing Software at NVIDIA. Mark has fifteen years of experience developing software for GPUs, ranging from graphics and games, to physically-based simulation, to parallel algorithms and high-performance computing. Mark has been using GPUs for general-purpose computing since before they even supported floating point arithmetic. While a Ph.D. student at UNC he recognized this nascent trend and coined a name for it: GPGPU (General-Purpose computing on Graphics Processing Units), and started GPGPU.org to provide a forum for those working in the field to share and discuss their work.

Read the Full Story

Sign up for our insideHPC Newsletter