Hazel Hen Supercomputer Reaches Computational Milestone

Print Friendly, PDF & Email

3D visualization of the data set investigated in Hazel Hen’s millionth job. The CAVE at HLRS makes it possible to explore a fluid jet in fine detail.

Over at HLRS, Christopher Williams writes that the Hazel Hen supercomputer recently completed its Millionth compute job.

Leading the research behind the millionth job was Professor Bernhard Weigand, Director of the Institute of Aerospace Thermodynamics at the University of Stuttgart. His laboratory studies multiphase flows, a common phenomenon across nature in which materials in different states or phases (gases, liquids, and solids) are simultaneously present and physically interact. In meteorology, for instance, raindrops, dew, and fog constitute multiphase flows, as does the exchange of gases between the oceans and the atmosphere. Such phenomena also occur in our daily lives, such as when water bounces off our skin in the shower or when we inhale nasal sprays to control the symptoms of a cold.

High-performance computing (HPC) is absolutely essential to the success of FS3D because the software requires an extremely high “gate resolution.” Like the frame rate in a video or movie camera, the program must represent the complex collisions, adhesions, and breaking apart of droplets and molecules at extremely small scales of space and time. FS3D can simulate such interactions in 2 billion “cells” at once, each of which represents a volume of less than 7 cubic micrometers, tracking how the composition of every cell changes over time.

Achieving such a high resolution generates massively large datasets, and it is only by using a supercomputer as powerful as HLRS’s Hazel Hen that these simulations can be run quickly enough to be of any practical use. Moreover, during simulations, HPC architectures can rapidly and reliably save enormous collections of data that are output from one round of calculations and efficiently convert them into inputs for the next. In this way, simulation becomes an iterative process, leading to better and better models of complex phenomena, such as the multiphase flows the Weigand Lab is investigating.

In the future, such information could enable engineers to improve the efficiency of their nozzle designs. In this sense, the millionth compute job on Hazel Hen was just one page in a long and continuing scientific story. Nevertheless, it embodies the unique kinds of research that HLRS makes possible everyday.

Read the Full Story

Sign up for our insideHPC Newsletter