Over at the NVIDIA Blog, Geetika Gupta writes that the company’s powerful GPUs are being used by five of the six Gordon Bell Prize finalists. Just announced by ACM, these world-leading researchers did their work on the new NVIDIA GPU-accelerated Summit system at Oak Ridge National Laboratory and Sierra system at Lawrence Livermore National Laboratory. Summit is currently the world’s fastest supercomputer and Sierra is the third fastest, according to most recent Top500 list.
Summit, an open system for researchers worldwide, is designed to bring 200 petaflops of high-precision computing performance and over 3 exaflops of AI, powered by 27,648 NVIDIA Volta Tensor Core GPUs. The revolutionary accelerators enable multi-precision computing that fuses the highly precise calculations to tackle the challenges of high performance computing with the efficient processing required for deep learning.
Additionally, half of the six projects included NVIDIA researchers who were heavily involved with the code development and performance tuning. NVIDIA employees listed as authors on nominated projects include: M.A. Clark, Massimiliano Fatica, Michael Houston, Nathan Luehr, Akira Naruse, Everett Phillips, Joshua Romero and Sean Treichler.
Five finalists who used NVIDIA Tensor Core GPUs:
- Identification of extreme weather patterns from high-resolution climate simulations: A team led by Prabhat, a data scientist at Lawrence Berkeley National Laboratory, and NVIDIA engineer Michael Houston used AI software to analyze how extreme weather is likely to change in the future. They used specialized Tensor Cores built into Summit’s NVIDIA GPUs to achieve a performance of 1.13 exaflops, the fastest deep learning algorithm reported.
- Use of AI and transprecision computing to accelerate earthquake simulation: A team led by Tsuyoshi Ichimura, of the University of Tokyo, used Summit to expand on an existing algorithm. The result was a 4x speedup enabling the coupling of shaking ground and urban structures within an earthquake simulation.
- Development of genomics algorithm to attain exascale speeds: A team from Oak Ridge National Laboratory led by Dan Jacobson achieved a peak throughput of 2.31 exaops, the fastest science application ever reported. Their work compares genetic variations within a population to uncover hidden networks of genes that contribute to complex traits. One condition the team is studying is opioid addiction, which was linked to nearly 50,000 U.S. deaths in 2017.
- Identification of materials’ atomic-level information from electron microscopy data: Another Oak Ridge team led by Robert Patton used Summit to develop AI-powered software to fabricate materials at the atomic level. The team achieved a speed of 152.5 petaflops across 3,000 nodes using the MENNDL algorithm.
- Development of an algorithm to help scientists quantify the lifetime of neutrons: A University of California, Berkeley, team led by computational nuclear physicist André Walker-Loud used the Volta GPU-based nodes of Summit and Sierra to calculate the physics of the subatomic particles making up protons and neutrons. They demonstrated improved workflow management capabilities that contributed to sustained performance of nearly 20 petaflops, a 15-fold speedup from previous-generation systems.
In this video from ISC 2018, Yan Fisher from Red Hat and Buddy Bland from ORNL discuss Summit, the world’s fastest supercomputer. Red Hat teamed with IBM, Mellanox, and NVIDIA to provide users with a new level of performance for HPC and AI workloads.
The Gordon Bell Prize winner will be announced Nov. 15 at SC18 conference, in Dallas.