Sign up for our newsletter and get the latest HPC news and analysis.
Send me information from insideHPC:


Open Source RAPIDS GPU Platform to Accelerate Predictive Data Analytics

Today NVIDIA announced a GPU-acceleration platform for data science and machine learning, with broad adoption from industry leaders, that enables even the largest companies to analyze massive amounts of data and make accurate business predictions at unprecedented speed.

Data analytics and machine learning are the largest segments of the high performance computing market that have not been accelerated — until now,” said Jensen Huang, founder and CEO of NVIDIA, who revealed RAPIDS in his keynote address at the GPU Technology Conference. “The world’s largest industries run algorithms written by machine learning on a sea of servers to sense complex patterns in their market and environment, and make fast, accurate predictions that directly impact their bottom line.

RAPIDS open-source software gives data scientists a giant performance boost as they address highly complex business challenges, such as predicting credit card fraud, forecasting retail inventory and understanding customer buying behavior. Reflecting the growing consensus about the GPU’s importance in data analytics, an array of companies is supporting RAPIDS — from pioneers in the open-source community, such as Databricks and Anaconda, to tech leaders like Hewlett Packard Enterprise, IBM and Oracle.

Analysts estimate the server market for data science and machine learning at $20 billion annually, which — together with scientific analysis and deep learning — pushes up the value of the high performance computing market to approximately $36 billion.

Building on CUDA and its global ecosystem, and working closely with the open-source community, we have created the RAPIDS GPU-acceleration platform. It integrates seamlessly into the world’s most popular data science libraries and workflows to speed up machine learning. We are turbocharging machine learning like we have done with deep learning,” he said.

RAPIDS offers a suite of open-source libraries for GPU-accelerated analytics, machine learning and, soon, data visualization. It has been developed over the past two years by NVIDIA engineers in close collaboration with key open-source contributors.

For the first time, it gives scientists the tools they need to run the entire data science pipeline on GPUs. Initial RAPIDS benchmarking, using the XGBoost machine learning algorithm for training on an NVIDIA DGX-2 system, shows 50x speedups compared with CPU-only systems. This allows data scientists to reduce typical training times from days to hours, or from hours to minutes, depending on the size of their dataset.

Close Collaboration with Open-Source Community

RAPIDS builds on popular open-source projects — including Apache Arrow, pandas and scikit-learn — by adding GPU acceleration to the most popular Python data science toolchain. To bring additional machine learning libraries and capabilities to RAPIDS, NVIDIA is collaborating with such open-source ecosystem contributors as Anaconda, BlazingDB, Databricks, Quansight and scikit-learn, as well as Wes McKinney, head of Ursa Labs and creator of Apache Arrow and pandas, the fastest-growing Python data science library.

RAPIDS, a GPU-accelerated data science platform, is a next-generation computational ecosystem powered by Apache Arrow,” McKinney said. “NVIDIA’s collaboration with Ursa Labs will accelerate the pace of innovation in the core Arrow libraries and help bring about major performance boosts in analytics and feature engineering workloads.”

To facilitate broad adoption, NVIDIA is integrating RAPIDS into Apache Spark, the leading open-source framework for analytics and data science.

Broad Ecosystem Support and Adoption

Some of the world’s leading technology companies are supporting RAPIDS through new systems, data science platforms and software solutions:

HPE is committed to advancing the way customers live and work. Artificial intelligence, analytics and machine learning technology can play a critical role in uncovering insights that can help customers achieve breakthrough results and improve the world we live in,” said Antonio Neri, CEO, Hewlett Packard Enterprise. “HPE is unique in the market in that we provide complete AI and data analytics solutions from strategic advisory to purpose-built GPU accelerator technology, operational support and a strong partner ecosystem to tailor the right solution for each customer. We are excited to partner with NVIDIA on RAPIDS to accelerate the application of data science and machine learning to help our customers drive faster and more insightful outcomes.”

Sign up for our insideHPC Newsletter

Leave a Comment

*

Resource Links: