Sign up for our newsletter and get the latest HPC news and analysis.
Send me information from insideHPC:


In-Memory Computing for HPC

To achieve high performance, modern computer systems rely on two basic methodologies to scale resources: scale-up or scale-out. The scale-up in-memory system provides a much better total cost of ownership and can provide value in a variety of ways. “If the application program has concurrent sections then it can be executed in a “parallel” fashion. Much like using multiple bricklayers to build a brick wall. It is important to remember that the amount and efficiency of the concurrent portions of a program determine how much faster it can run on multiple processors. Not all applications are good candidates for parallel execution.”

Artificial Intelligence Becomes More Accessible

With the advent of heterogeneous computing systems that combine both main CPUs and connected processors that can ingest and process tremendous amounts of data and run complex algorithms, artificial intelligence (AI) technologies are beginning to take hold in a variety of industries. Massive datasets can now be used to drive innovation in industries such as autonomous driving systems, controlling power grids and combining data to arrive at a profitable decision, for example. Read how AI can now be used in various industries using the latest hardware and software.

High Performance System Interconnect Technology

Today, high performance interconnects can be divided into three categories: Ethernet, InfiniBand, and vendor specific interconnects. Ethernet is established as the dominant low level interconnect standard for mainstream commercial computing requirements. InfiniBand originated in 1999 to specifically address workload requirements that were not adequately addressed by Ethernet, and vendor specific technologies frequently have a time to market (and therefore performance) advantage over standardized offerings.

Special Report on Top Trends in HPC Networking

A survey conducted by insideHPC and Gabriel Consulting in Q4 of 2105 indicated that nearly 45% of HPC and large enterprise customers would spend more on system interconnects and I/O in 2016, with 40% maintaining spending at the same level as the prior year. For manufacturing, the largest subset representing approximately one third of the respondents, over 60% were planning to spend more and almost 30% maintaining the same level of spending going into 2016 implying the critical value of high performance interconnects.

The SGI Data Management Framework for Personalized Medicine

SGI’s Data Management Framework (DMF) software – when used within personalized medicine applications – provides a large-scale, storage virtualization and tiered data management platform specifically engineered to administer the billions of files and petabytes of structured and unstructured fixed content generated by highly scalable and extremely dynamic life sciences applications.

NVIDIA Tesla P100 GPU Review

Accelerated computing continues to gain momentum as the HPC community moves towards Exascale. Our recent Tesla P100 GPU review shows how these accelerators are opening up new worlds of performance vs. traditional CPU-based systems and even vs. NVIDIA’s previous K80 GPU product. We’ve got benchmarks, case studies, and more in the insideHPC Research Report on GPU Accelerators.

FPGA Myths

As data center sprawl is now understood to be expensive and may not deliver performance increases for all types of applications, new technologies are coming to the rescue. A field-programmable gate array (FPGA) is an integrated circuit designed to be configured by a customer or a designer after manufacturing – hence “field-programmable”. While the use of GPUs and HPC accelerators are generally understood today, there are a number of misconceptions about FPGAs that need to be understood.

High-Throughput Genomic Sequencing Workflow

A workflow to support genomic sequencing requires a collaborative effort between many research groups and a process from initial sampling to final analysis. Learn the 4 steps involved in pre-processing.

Can FPGAs Help You?

FPGAs will become increasing important for organizations that have a wide range of applications that can benefit from performance increases. Rather than a brute force method to increasing performance in a data center by purchasing and maintaining racks of hardware and associated costs, FPGAs may be able to equal and exceed the performance of additional servers, while reducing costs as well.

GPU Accelerators in Today’s Data Center: Performance & Efficiency

NVIDIA is a leading provider of GPU accelerators that are used in many High Performance Computing environments. This research paper from Gabriel Consulting Group explains the need for this new generation of hardware in today’s data center and looks at what new technologies actual users are looking for.