Sign up for our newsletter and get the latest HPC news and analysis.
Send me information from insideHPC:


Building a GPU-enabled and Performance-portable Global Cloud-resolving Atmospheric Model

Richard Loft from NCAR gave this talk at the NVIDIA booth at SC17. “The objectives of NCAR’s exploration of accelerator architectures for high performance computing in recent years has been to 1) speed up the rate of code optimization and porting and 2) understand how to achieve performance portability on codes in the most economical and affordable way.

Job of the Week: Software Engineer at NCAR

NCAR in Boulder is seeking a Software Engineer in our Job of the Week. “This position focuses primarily on the development of tools to meet the needs for the NCAR/IT community, and the design, writing, implementation, and support for systems monitoring tools necessary for the management of the computer infrastructure. Support will also be provided to the research community for the development of web-based analysis tools and general web programming.”

Cheyenne Supercomputer Triples Scientific Capability at NCAR

The National Center for Atmospheric Research (NCAR) is launching operations this month of one of the world’s most powerful and energy-efficient supercomputers, providing the nation with a major new tool to advance understanding of the atmospheric and related Earth system sciences. Named “Cheyenne,” the 5.34-petaflop system is capable of more than triple the amount of scientific computing performed by the previous NCAR supercomputer, Yellowstone. It also is three times more energy efficient.

Video: Introduction to the Cheyenne Supercomputer

Cheyenne is a new 5.34-petaflops, high-performance computer built for NCAR by SGI. Cheyenne be a critical tool for researchers across the country studying climate change, severe weather, geomagnetic storms, seismic activity, air quality, wildfires, and other important geoscience topics. In this video, Brian Vanderwende from UCAR describes typical workflows in the NCAR/CISL Cheyenne HPC environment as well as performance […]

Video: Advances and Challenges in Wildland Fire Monitoring and Prediction

Janice Coen from NCAR gave this Invited Talk at SC16. “The past two decades have seen the infusion of technology that has transformed the understanding, observation, and prediction of wildland fires and their behavior, as well as provided a much greater appreciation of its frequency, occurrence, and attribution in a global context. This talk will highlight current research in integrated weather – wildland fire computational modeling, fire detection and observation, and their application to understanding and prediction.”

NCAR’s Evolving Infrastructure for Weather and Climate Research

Pamela Hill from NCAR/UCAR presented this talk at the DDN User Group at SC16. “With the game-changing SFA14K, NCAR now has the storage capacity and sustained compute performance to perform sophisticated modeling while substantially reducing workflow bottlenecks. As a result, the organization will be able to quickly process mixed I/O workloads while sharing up to 40 PBs of vital research data with a growing scientific community around the world.”

Cheyenne – NCAR’s Next-Gen Data-Centric Supercomputer

In this video, Dave Hart, CISL User Services Manager presents: Cheyenne – NCAR’s Next-Generation Data-Centric Supercomputing Environment. “Cheyenne is a new 5.34-petaflops, high-performance computer built for NCAR by SGI. The hardware was delivered on Monday, September 12, at the NCAR-Wyoming Supercomputing Center (NWSC) and the system is on schedule to become operational at the beginning of 2017. All of the compute racks were powered up and nodes booted up within a few days of delivery.”

PSyclone Software Eases Weather and Climate Forecasting

“PSyclone was developed for the UK Met Office and is now a part of the build system for Dynamo, the dynamical core currently in development for the Met Office’s ‘next generation’ weather and climate model software. By generating the complex code needed to make use of thousands of processors, PSyclone leaves the Met Office scientists free to concentrate on the science aspects of the model. This means that they will not have to change their code from something that works on a single processing unit (or core) to something that runs on many thousands of cores.”

Supercomputers Power NOAA Flood Forecasting Tool

NOAA and its partners have developed a new forecasting tool to simulate how water moves throughout the nation’s rivers and streams, paving the way for the biggest improvement in flood forecasting the country has ever seen. Launched today and run on NOAA’s powerful new Cray XC40 supercomputer, the National Water Model uses data from more than 8,000 U.S. Geological Survey gauges to simulate conditions for 2.7 million locations in the contiguous United States. The model generates hourly forecasts for the entire river network. Previously, NOAA was only able to forecast streamflow for 4,000 locations every few hours.

UW Projects Awarded 42 Million Core Hours on Yellowstone Supercomputer

“A new supercomputer, dubbed Cheyenne, is expected to be operational at the beginning of 2017. The new high-performance computer will be a 5.34-petaflop system, meaning it can carry out 5.34 quadrillion calculations per second. It will be capable of more than 2.5 times the amount of scientific computing performed by Yellowstone.”