MailChimp Developer

Sign up for our newsletter and get the latest HPC news and analysis.
Send me information from insideHPC:


Context Matters: Distributed Graph Algorithms and Runtime Systems

In this video from the PASC16 conference, Andrew Lumsdaine from Indiana University presents: Context Matters: Distributed Graph Algorithms and Runtime Systems. “The increasing complexity of the software/hardware stack of modern supercomputers makes understanding the performance of the modern massive-scale codes difficult. Distributed graph algorithms (DGAs) are at the forefront of that complexity, pushing the envelope with their massive irregularity and data dependency. We analyze the existing body of research on DGAs to assess how technical contributions are linked to experimental performance results in the field. We distinguish algorithm-level contributions related to graph problems from “runtime-level” concerns related to communication, scheduling, and other low-level features necessary to make distributed algorithms work. We show that the runtime is an integral part of DGAs’ experimental results, but it is often ignored by the authors in favor of algorithm-level contributions.”

Video: Rolling Out the New Intel Xeon Phi Processor at ISC 2016

In this video from ISC 2016, Barry Davis from Intel describes the company’s brand new Intel Xeon Phi Processor and how it fits into the Intel Scalable System Framework. “Eliminate node bottlenecks, simplify your code modernization and build on a power-efficient architecture with the Intel Xeon Phi™ processor, a foundational element of Intel Scalable System Framework. The bootable host processor offers an integrated architecture for powerful, highly parallel performance that will pave your path to deeper insight, innovation and impact for today’s most-demanding High Performance Computing applications, including Machine Learning. Supported by a comprehensive technology roadmap and robust ecosystem, the Intel Xeon Phi processor is a future-ready solution that maximizes your return on investment by using open standards code that are flexible, portable and reusable.”

Video: Announcing Intel HPC Orchestrator

In this video from ISC 2016, Figen Ulgen from Intel describes the new Intel HPC Orchestrator. “Intel HPC Orchestrator simplifies the installation, management and ongoing maintenance of a high-performance computing system by reducing the amount of integration and validation effort required for the HPC system software stack. Intel HPC Orchestrator can help accelerate your time to results and value in your HPC initiatives. With Intel HPC Orchestrator, based on the OpenHPC system software stack, you can take advantage of the innovation driven by the open source community – while also getting peace of mind from Intel support across the stack.”

Interview: Dr. Eng Lim Goh on the Latest Trends in High Performance Data Analytics

In this video from ISC 2016, Dr. Eng Lim Goh from SGI discusses the latest trends in high performance data analytics and machine learning. “Dr. Eng Lim Goh joined SGI in 1989, becoming a chief engineer in 1998 and then chief technology officer in 2000. He oversees technical computing programs with the goal to develop the next generation computer architecture for the new many-core era. His current research interest is in the progression from data intensive computing to analytics, machine learning, artificial specific to general intelligence and autonomous systems. Since joining SGI, he has continued his studies in human perception for user interfaces and virtual and augmented reality.”

Dell Brings Supercomputing Power to Mainstream Enterprises

“While traditional HPC has been critical to research programs that enable scientific and societal advancement, Dell is mainstreaming these capabilities to support enterprises of all sizes as they seek a competitive advantage in an ever increasing digital world,” said Jim Ganthier, vice president and general manager, Dell Engineered Systems, Cloud and HPC. “As a clear leader in HPC, Dell now offers customers highly flexible, precision built HPC systems for multiple vertical industries based upon years of experience powering the world’s most advanced academic and research institutions. With Dell HPC Systems, our customers can deploy HPC systems more quickly and cost effectively and accelerate their speed of innovation to deliver both breakthroughs and business results.”

Slidecast: Announcing the Nvidia Tesla P100 for PCIe Servers

In this slidecast, Marc Hamilton from describes the Nvidia Tesla P100 for PCIe Servers. “The Tesla P100 for PCIe is available in a standard PCIe form factor and is compatible with today’s GPU-accelerated servers. It is optimized to power the most computationally intensive AI and HPC data center applications. A single Tesla P100-powered server delivers higher performance than 50 CPU-only server nodes when running the AMBER molecular dynamics code, and is faster than 32 CPU-only nodes when running the VASP material science applications.”

Challenges for Climate and Weather Prediction in the Era of Heterogeneous Architectures

Beth Wingate from the University of Exeter presented this talk at the PASC16 conference in Switzerland. “For weather or climate models to achieve exascale performance on next-generation heterogeneous computer architectures they will be required to exploit on the order of million- or billion-way parallelism. This degree of parallelism far exceeds anything possible in today’s models even though they are highly optimized. In this talk I will discuss the mathematical issue that leads to the limitations in space- and time-parallelism for climate and weather prediction models – oscillatory stiffness in the PDE.”

Simulations of Hydrogen Ingestion Flashes in Giant Stars

“My team at the University of Minnesota has been collaborating with the team of Falk Herwig at the University of Victoria to simulate brief events in the lives of stars that can greatly affect the heavy elements they synthesize in their interiors and subsequently expel into the interstellar medium. These events are caused by the ingestion of highly combustible hydrogen-rich fuel into the convection zone above a helium burning shell in the deeper interior. Although these events are brief, it can take millions of time steps to simulate the dynamics in sufficient detail to capture subtle aspects of the hydrogen ingestion. To address the computational challenge, we exploit modern multicore and many-core processors and also scale the simulations to run efficiently on over 13,000 nodes of NSF’s Blue Waters machine at NCSA.”

IBM POWER8 System to Advance Genomic Health Research at University of Calgary

Today IBM and the University of Calgary announced a five-year collaboration to accelerate and expand genomic research into common childhood conditions such as autism, congenital diseases and the many unknown causes of illness. As part of the collaboration, IBM will augment the existing research capacity at the Cumming School of Medicine’s Alberta Children’s Hospital Research Institute by installing a POWER8-based computing and storage infrastructure along with advanced analytics and cognitive computing software.

Slidecast: Announcing Mellanox ConnectX-5 100G InfiniBand Adapter

“Today, scalable compute and storage systems suffer from data bottlenecks that limit research, product development, and constrain application services. ConnectX-5 will help unleash business potential with faster, more effective, real-time data processing and analytics. With its smart offloading, ConnectX-5 will enable dramatic increases in CPU, GPU and FPGA performance that will enhance effectiveness and maximize the return on data centers’ investment.”