Sign up for our newsletter and get the latest HPC news and analysis.
Send me information from insideHPC:

HPC I/O for Computational Scientists

Phil Carns from Argonne gave this talk at the 2017 Argonne Training Program on Extreme-Scale Computing. “Darshan is a scalable HPC I/O characterization tool. It captures an accurate but concise picture of application I/O behavior with minimum overhead. Darshan was originally developed on the IBM Blue Gene series of computers deployed at the Argonne Leadership Computing Facility, but it is portable across a wide variety of platforms include the Cray XE6, Cray XC30, and Linux clusters.  Darshan routinely instruments jobs using up to 786,432 compute cores on the Mira system at ALCF.”

How Manufacturing will Leap Forward with Exascale Computing

In this special guest feature, Jeremy Thomas from Lawrence Livermore National Lab writes that exascale computing will be a vital boost to the U.S. manufacturing industry. “This is much bigger than any one company or any one industry. If you consider any industry, exascale is truly going to have a sizeable impact, and if a country like ours is going to be a leader in industrial design, engineering and manufacturing, we need exascale to keep the innovation edge.”

Supercomputing Earthquakes in the Age of Exascale

Tomorrow’s exascale supercomputers will enable researchers to accurately simulate the ground motions of regional earthquakes quickly and in unprecedented detail. “Simulations of high frequency earthquakes are more computationally demanding and will require exascale computers,” said David McCallen, who leads the ECP-supported effort. “Ultimately, we’d like to get to a much larger domain, higher frequency resolution and speed up our simulation time.”

SciDAC funding to Move Quantum Chromodynamics forward at Jefferson Lab

As nuclear physicists delve ever deeper into the heart of matter, they require the tools to reveal the next layer of nature’s secrets. Nowhere is that more true than in computational nuclear physics. A new research effort led by theorists at DOE’s Jefferson Lab is now preparing for the next big leap forward in their studies thanks to funding under the 2017 SciDAC Awards for Computational Nuclear Physics.

Exascale: The Movie

In this video from HPE, researchers describe how Exascale will advance science and improve the quality of life for all. “Why is the U.S. government throwing down this gauntlet? Many countries are engaged in what has been referred to as a race to exascale. But getting there isn’t just for national bragging rights. Getting to exascale means reaching a new frontier for humanity, and the opportunity to potentially solve humanity’s most pressing problems.”

Future HPC Leaders Gather at Argonne Training Program on Extreme-Scale Computing

Over at ALCF, Andrea Manning writes that the recent Argonne Training Program on Extreme-Scale Computing brought together HPC practitioners from around the world. “You can’t get this material out of a textbook,” said Eric Nielsen, a research scientist at NASA’s Langley Research Center. Added Johann Dahm of IBM Research, “I haven’t had this material presented to me in this sort of way ever.”

Exascale Computing to Accelerate Clean Fusion Energy

In this special guest feature, Jon Bashor from LBNL writes that Exascale computing will accelerate the push toward clean fusion energy. “Turning this from a promising technology into a mainstream scientific tool depends critically on high-performance, high-fidelity modeling of complex processes that develop over a wide range of space and time scales.”

Multiscale Dataflow Computing: Competitive Advantage at the Exascale Frontier

“This talk will explain the motivation behind dataflow computing to escape the end of frequency scaling in the push to exascale machines, introduce the Maxeler dataflow ecosystem including MaxJ code and DFE hardware, and demonstrate the application of dataflow principles to a specific HPC software package (Quantum ESPRESSO).”

With Exascale Looming, this is an Exciting Time for Computational Science

In this video from the 2017 CGSF Review Meeting, Barbara Helland from the Department of Energy presents: With Exascale Looming, this is an Exciting Time for Computational Science. “Helland was also a presenter this week at the ASCR Advisory Committee Meeting, where she disclosed that the Aurora 21 Supercomputer coming to Argonne in 2021 will indeed be an exascale machine.”

IDEAS Program Fostering Better Software Development for Exascale

Scalability of scientific applications is a major focus of the Department of Energy’s Exascale Computing Project (ECP) and in that vein, a project known as IDEAS-ECP, or Interoperable Design of Extreme-scale Application Software, is also being scaled up to deliver insight on software development to the research community.