Sign up for our newsletter and get the latest HPC news and analysis.
Send me information from insideHPC:


Video: AI – The Next HPC Workload

“From new cloud offerings on AWS and Azure, to Summit and Sierra, the 150+ PF supercomputers being built by the US in 2017, new AI workloads are driving the rapid growth of GPU accelerated HPC systems. For years, HPC simulations have generated ever increasing amounts of big data, a trend further accelerated by GPU computing. With GPU Deep Learning and other AI approaches, a larger amount of big data than ever can now be used to advance scientific discovery.”

Cray to Develop ARM-based Isambard Supercomputer for UK Met Office

“This is an exciting time in high performance computing,” said Prof Simon McIntosh-Smith, leader of the project and Professor of High Performance Computing at the University of Bristol. “Scientists have a growing choice of potential computer architectures to choose from, including new 64-bit ARM CPUs, graphics processors, and many-core CPUs from Intel. Choosing the best architecture for an application can be a difficult task, so the new Isambard GW4 Tier 2 HPC service aims to provide access to a wide range of the most promising emerging architectures, all using the same software stack.”

Video: A Look at the Mogon II HPC Cluster at Johannes Gutenberg University

In this video, Prof. Dr.-Ing. André Brinkmann from the JGU datacenter describes the Mogon II cluster, a 580 Teraflop system currently ranked #265 on the TOP500. “Built by MEGWARE in Germany, the Mogon II system consists of 814 individual nodes each equipped with 2 Intel 2630v4 CPUs and connected via OmniPath 50Gbits (fat-tree). Each CPU has 10 cores, giving a total of 16280 cores.”

Scaling Software for In-Memory Computing

“The move away from the traditional single processor/memory design has fostered new programming paradigms that address multiple processors (cores). Existing single core applications need to be modified to use extra processors (and accelerators). Unfortunately there is no single portable and efficient programming solution that addresses both scale-up and scale-out systems.”

Dell EMC Powers Summit Supercomputer at CU Boulder

“The University of Colorado, Boulder supports researchers’ large-scale computational needs with their newly optimized high performance computing system, Summit. Summit is designed with advanced computation, network, and storage architectures to deliver accelerated results for a large range of HPC and big data applications. Summit is built on Dell EMC PowerEdge Servers, Intel Omni-Path Architecture Fabric and Intel Xeon Phi Knights Landing processors.”

Selecting HPC Network Technology

“With three primary network technology options widely available, each with advantages and disadvantages in specific workload scenarios, the choice of solution partner that can deliver the full range of choices together with the expertise and support to match technology solution to business requirement becomes paramount.”

Understanding Cities through Computation, Data Analytics, and Measurement

“For many urban questions, however, new data sources will be required with greater spatial and/or temporal resolution, driving innovation in the use of sensors in mobile devices as well as embedding intelligent sensing infrastructure in the built environment. Collectively, these data sources also hold promise to begin to integrate computational models associated with individual urban sectors such as transportation, building energy use, or climate. Catlett will discuss the work that Argonne National Laboratory and the University of Chicago are doing in partnership with the City of Chicago and other cities through the Urban Center for Computation and Data, focusing in particular on new opportunities related to embedded systems and computational modeling.”

Intel HPC Orchestrator Powers Research at University of Pisa

In this video, Maurizio Davini from the University of Pisa describe how the University works with Dell EMC and Intel to test new technologies, integrate and optimize HPC systems with Intel HPC Orchestrator software. “We believe these two companies are at the forefront of innovation in high performance computing,” said University CTO Davini. “We also share a common goal of simplifying HPC to support a broader range of users.”

Mellanox Ethernet Accelerates Baidu Machine Learning

Today Mellanox announced that Spectrum Ethernet switches and ConnectX-4 100Gb/s Ethernet adapters have been selected by Baidu, the leading Chinese language Internet search provider, for Baidu’s Machine Learning platforms. The need for higher data speed and most efficient data movement placed Spectrum and RDMA-enabled ConnectX-4 adapters as key components to enable world leading machine learning […]

Scaling Hardware for In-Memory Computing

The two methods of scaling processors are based on the method used to scale the memory architecture and are called scaling-out or scale-up. Beyond the basic processor/memory architecture, accelerators and parallel file systems are also used to provide scalable performance. “High performance scale-up designs for scaling hardware require that programs have concurrent sections that can be distributed over multiple processors. Unlike the distributed memory systems described below, there is no need to copy data from system to system because all the memory is globally usable by all processors.”