In this video, researchers describe the results from the ExaNeSt project. “The prototype is now successfully built, demonstrating energy efficiency in a High-Performance Computing (HPC) testbed: the energy consumed for solving a given problem on this new platform is 3 to 10 times lower than what traditional HPC processors of the same time generation consume for solving the same problem. The substantial prototype has been validated through the execution of full HPC applications from materials science, climate forecasting, computational fluid dynamics, astrophysics, neuroscience, and a database.”
BeeGFS Parallel File System Goes Open Source
Today ThinkParQ announced that the complete BeeGFS parallel file system is now available as open source. Developed specifically for performance-critical environments, the BeeGFS parallel file system was developed with a strong focus on easy installation and high flexibility, including converged setups where storage servers are also used for compute jobs. By increasing the number of servers and disks in the system, performance and capacity of the file system can simply be scaled out to the desired level, seamlessly from small clusters up to enterprise-class systems with thousands of nodes.
ExaNeSt European Consortium to Develop Exascale Architecture
In this special guest feature, Robert Roe from Scientific Computing World reports that a new Exascale computing architecture using ARM processors is being developed by a European consortium of hardware and software providers, research centers, and industry partners. Funded by the European Union’s Horizon2020 research program, a full prototype of the new system is expected to be ready by 2018.
European ExaNeSt Project to Pave the Way to Exascale
Today the European Consortium announced a step towards Exascale computing with the ExaNeSt project. Funded by the Horizon 2020 initiative, ExaNeSt plans to build its first straw man prototype in 2016. The Consortium consists of twelve partners, each of which has expertise in a core technology needed for innovation to reach Exascale. ExaNeSt takes the sensible, integrated approach of co-designing the hardware and software, enabling the prototype to run real-life evaluations, facilitating its scalability and maturity into this decade and beyond.
Iceotope Showcases ExaNeSt Cooling Technology for Exascale
In this video from SC15, Peter Hopton from Iceotope describes the company’s innovative liquid cooling technology for the European ExaNeSt project. “ExaNeSt will develop, evaluate, and prototype the physical platform and architectural solution for a unified Communication and Storage Interconnect and the physical rack and environmental structures required to deliver European Exascale Systems.”
ExaNeSt Technology: Targeting Exascale in 2018
Peter Hopton from Iceotope presented this talk at the HPC User Forum. “ExaNeSt will develop, evaluate, and prototype the physical platform and architectural solution for a unified Communication and Storage Interconnect and the physical rack and environmental structures required to deliver European Exascale Systems. The consortium brings technology, skills, and knowledge across the entire value chain from computing IP to packaging and system deployment; and from operating systems, storage, and communication to HPC with big data management, algorithms, applications, and frameworks. Building on a decade of advanced R&D, ExaNeSt will deliver the solution that can support exascale deployment in the follow-up industrial commercialization phases.”