Sign up for our newsletter and get the latest big data news and analysis.
Daily
Weekly

Modern HPC and Big Data Design Strategies for Data Centers – Part 3

This insideHPC Special Research Report, “Modern HPC and Big Data Design Strategies for Data Centers,” provides an overview of what to consider when selecting an infrastructure capable of meeting the new workload processing needs. Tyan has a wide range of bare bones server and storage hardware solutions available for organizations and enterprise customers.

Modern HPC and Big Data Design Strategies for Data Centers – Part 2

This insideHPC Special Research Report, “Modern HPC and Big Data Design Strategies for Data Centers,” provides an overview of what to consider when selecting an infrastructure capable of meeting the new workload processing needs. Tyan has a wide range of bare bones server and storage hardware solutions available for organizations and enterprise customers.

Modern HPC and Big Data Design Strategies for Data Centers

This insideHPC Special Research Report, “Modern HPC and Big Data Design Strategies for Data Centers,” provides an overview of what to consider when selecting an infrastructure capable of meeting the new workload processing needs. Tyan has a wide range of bare bones server and storage hardware solutions  available for organizations and enterprise customers.

Modern HPC and Big Data Design Strategies for Data Centers

This insideHPC Special Research Report provides an overview of what to consider when selecting an infrastructure capable of meeting the new workload processing needs. Tyan has a wide range of bare bones server and storage hardware solutions  available for organizations and enterprise customers.

Practical Hardware Design Strategies for Modern HPC Workloads – Part 3

This special research report sponsored by Tyan discusses practical hardware design strategies for modern HPC workloads. As hardware continued to develop, technologies like multi-core, GPU, NVMe, and others have allowed new application areas to become possible. These application areas include accelerator assisted HPC, GPU based Deep learning, and Big Data Analytics systems. Unfortunately, implementing a general purpose balanced system solution is not possible for these applications. To achieve the best price-to-performance in each of these application verticals, attention to hardware features and design is most important.

Practical Hardware Design Strategies for Modern HPC Workloads – Part 2

This special research report sponsored by Tyan discusses practical hardware design strategies for modern HPC workloads. As hardware continued to develop, technologies like multi-core, GPU, NVMe, and others have allowed new application areas to become possible. These application areas include accelerator assisted HPC, GPU based Deep learning, and Big Data Analytics systems. Unfortunately, implementing a general purpose balanced system solution is not possible for these applications. To achieve the best price-to-performance in each of these application verticals, attention to hardware features and design is most important.

Practical Hardware Design Strategies for Modern HPC Workloads

This special research report sponsored by Tyan discusses practical hardware design strategies for modern HPC workloads. As hardware continued to develop, technologies like multi-core, GPU, NVMe, and others have allowed new application areas to become possible. These application areas include accelerator assisted HPC, GPU based Deep learning, and Big Data Analytics systems. Unfortunately, implementing a general purpose balanced system solution is not possible for these applications. To achieve the best price-to-performance in each of these application verticals, attention to hardware features and design is most important.

Practical Hardware Design Strategies for Modern HPC Workloads

Many new technologies used in High Performance Computing (HPC) have allowed new application areas to  become possible. Advances like multi-core, GPU, NVMe, and others have created application verticals that  include accelerator assisted HPC, GPU based Deep Learning, Fast storage and parallel file systems, and Big  Data Analytics systems. In this special insideHPC technology guide sponsored by our friends over at Tyan, we look at practical hardware design strategies for modern HPC workloads.

TYAN Launches AI-Optimized Servers Powered by NVIDIA V100S GPUs

Today TYAN launched their latest GPU server platforms that support the NVIDIA V100S Tensor Core and NVIDIA T4 GPUs for a wide variety of compute-intensive workloads including AI training, inference, and supercomputing applications. “An increase in the use of AI is infusing into data centers. More organizations plan to invest in AI infrastructure that supports the rapid business innovation,” said Danny Hsu, Vice President of MiTAC Computing Technology Corporation’s TYAN Business Unit. “TYAN’s GPU server platforms with NVIDIA V100S GPUs as the compute building block enables enterprise to power their AI infrastructure deployment and helps to solve the most computationally-intensive problems.”

TYAN Boosts HPC and Storage Servers with New AMD EPYC 7002 Series Processors

Today TYAN announced support for high frequency AMD EPYC 7F32 (8 cores), EPYC 7F52 (16 cores) and EPYC 7F72 (24 cores) processor-based server motherboards and server systems to the market. TYAN’s HPC and storage server platforms continue to offer exceptional performance to datacenter customers. “Leveraging AMD’s innovation in 7nm process technology, PCIe 4.0 I/O, and an embedded security architecture, TYAN’s 2nd Gen AMD EPYC processor-based platforms are designed to address the most demanding challenges facing the datacenter”, said Danny Hsu, Vice President of MiTAC Computing Technology Corporation’s TYAN Business Unit. “Adding the new AMD EPYC 7002 Series processors with TYAN server platforms enable us to provide new capabilities to our customers and partners.”