Sign up for our newsletter and get the latest HPC news and analysis.
Send me information from insideHPC:


Intel Parallel Studio XE AVX-512: Tuning for Success with the Latest SIMD Extensions and Intel® Advanced Vector Extensions 512

With the introduction of Intel Parallel Studio XE, instructions for utilizing the vector extensions have been enhanced and new instructions have been added. Applications in diverse domains such as data compression and decompression, scientific simulations and cryptography can take advantage of these new and enhanced instructions. “Although microkernels can demonstrate the effectiveness of the new SIMD instructions, understanding why the new instructions benefit the code can then lead to even greater performance.”

Ray Tracing on Intel Xeon Phi with Embree

In computer graphics, ray tracing is a rendering technique for generating an image by tracing the path of light as pixels in an image plane and simulating the effects of its encounters with virtual objects. “Experienced computer graphics developers that understand how ray tracing works, in conjunction with a deep knowledge of the Intel Xeon Phi processor hardware have created a set of ray tracing kernels that take advantage of the underlying instruction sets and the available number of computing cores.”

Visualizing with Software Rendering with Intel Xeon Phi

There are two main categories or uses where rendering on the Intel Xeon Phi processors should be investigated. The first is what could be called “Professional rendering” and the second, “Scientific visualization.” “Software based visualization, whether for photo-realistic rendering or scientific visualization can be accelerated with a software only approach. This allows for new algorithms to be implemented faster than waiting for the next generation of hardware systems to appear. As the number of computing elements increases, performance can increase as well.”

Visualization in Software using Intel Xeon Phi processors

“Intel has been at the forefront of working with software partners to develop solutions for visualization of data that will scale in the future as many core systems such as the Intel Xeon Phi processor scale. The Intel Xeon Phi processor is extremely capable of producing visualizations that allow scientists and engineers to interactively view massive amounts of data.”

Parallel Applications Speed Up Manufacturing Product Development

The product design process has undergone a significant transformation with the availability of supercomputing power at traditional workstation prices. With over 100 threads available to an application in compact 2 socket servers, scalability of applications that are used as part of the product design and development process are just a keyboard away for a wide range of engineers.

Intel Parallel Studio XE 2018 For Demanding HPC Applications

“For those that develop HPC applications, there are usually two main areas that must be considered. The first is the translation of the algorithm, whether simulation based, physics based or pure research into the code that a modern computer system can run. A second challenge is how to move from the implementation of an algorithm to the performance that takes advantage of modern CPUs and accelerators.”

The Internet of Things and Tuning

“Understanding how the pipeline slots are being utilized can greatly increase the performance of the application. If pipeline slots are blocked for some reason, performance will suffer. Likewise, getting an understanding of the various cache misses can lead to a better organization of the data. This can increase performance while reducing latencies of memory to CPU.”

Internode Programming With MPI and Intel Xeon Phi Processor

“While MPI was originally developed for general purpose CPUs and is widely used in the HPC space in this capacity, MPI applications can also be developed and then deployed with the Intel Xeon Phi Processor. With the understanding of the algorithms that are used for a specific application, tremendous performance can be achieved by using a combination of OpenMP and MPI.”

Moving Toward the Cloud & Seamless HPC

This is the fifth and final entry in an insideHPC series that explores the HPC transition to the cloud and how this move can help create seamless HPC. This series, compiled in a complete Guide, covers cloud computing for HPC, why the OS is important, OpenStack fundamentals and more.

Feed The Cores – Memory Bandwidth Usage

“Memory bandwidth to the CPUs has always been important. There were typically CPU cores that would wait for the data (if not in cache) from main memory. However, with the advanced capabilities of the Intel Xeon Phi processor, there are new concepts to understand and take advantage of.”