Sign up for our newsletter and get the latest HPC news and analysis.
Send me information from insideHPC:


Podcast: Improving Parallel Applications with the TAU tool

In the podcast, Mike Bernhardt from ECP catches up with Sameer Shende to learn how the Performance Research Lab at the University of Oregon is helping to pave the way to Exascale. “Developers of parallel computing applications can well appreciate the Tuning and Analysis Utilities (TAU) performance evaluation tool—it helps them optimize their efforts. Sameer has worked with the TAU software for nearly two and a half decades and has released more than 200 versions of it. Whatever your application looks like, there’s a good chance that TAU can support it and help you improve your performance.”

Video: Flying through the Universe with Supercomputing Power

In this video from SC18, Mike Bernhardt from the Exascale Computing Project talked with Salman Habib of Argonne National Laboratory about cosmological computer modeling and simulation. Habib explained that the ExaSky project is focused on developing a caliber of simulation that will use the coming exascale systems at maximal power. Clearly, there will be different types of exascale machines,” he said, “and so they [DOE] want a simulation code that can use not just one type of computer, but multiple types, and with equal efficiency.”

Video: Optimizing Wind Power with the ExaWind Project at NREL

In this video, Scott Gibson discusses the ExaWind project for windmill simulation with Michael Sprague from NREL. ExaWind is part of the ECP, which is building applications that will scale to tomorrow’s Exascale machines. “Sprague also explains why the simulation is important because it demonstrates that the physics models of the ExaWind team will perform well on large computers and paves the way for the team to improve the models and direct simulation capability toward the exascale platform when it’s ready. He added that, ultimately, the team plans to simulate tens of large turbines within a large wind farm.”

Interview: The Importance of the Message Passing Interface to Supercomputing

In this video, Mike Bernhardt from the Exascale Computing Project catches up with ORNL’s David Bernholdt at SC18. They discuss supercomputing the conference, his career, the evolution and significance of message passing interface (MPI) in parallel computing, and how ECP has influenced his team’s efforts.

Video: ECP Launches Extreme-Scale Scientific Software Stack 0.1 Beta

Last week at SC18 in Dallas, the Exascale Computing Project released a portion of the next version of collaboratively developed products that compose the ECP software stack, including libraries and embedded software compilers. “Mike Heroux, ECP Software Technology director, said in an interview at SC18 that the software pieces in this release represent new capabilities and, in most instances, are highly tested and quite robust, and point toward exascale computing architectures.”

DOE to Showcase World-Class Computational Science at SC18

Researchers and staff from 15 National Labs will showcase DOE’s latest computing and networking innovations and accomplishments at SC18 in Dallas next week. “Several of the talks and demos will highlight achievements by DOE’s Exascale Computing Program (ECP), a multi-lab, seven-year collaborative effort focused on accelerating the delivery of a capable exascale computing ecosystem by 2021.”

Supercomputing Turbine Energy with the ExaWind Project

ECP’s ExaWind project aims to advance the fundamental comprehension of whole wind plant performance by examining wake formation, the impacts of complex terrain, and the effects of turbine-turbine wake interactions. When validated by targeted experiments, the predictive physics-based high-fidelity computational models at the center of the ExaWind project, and the new knowledge derived from their solutions, provide an effective path to optimizing wind plants.

Big Data over Big Distance: Zettar Moves a Petabyte over 5000 Miles in 29 Hours

Today AIC announced a world-record in data transfer: one petabyte in 29 hours encrypted data transfer, with data integrity checksum unconditionally enabled, over a distance of 5000 miles. The average transfer rate is 75Gbps, or 94% utilization of the available bandwidth of 80Gbps. “Even with massive amounts of data, this test confirmed once more that it’s completely feasible to carry out long distance, fully encrypted and checksum-ed data transfer at nearly the line-rate, over a shared and production network.”

Video: Rick Stevens from Argonne on the CANDLE Project for Exascale

In this video, Mike Bernhardt from ECP discusses the CANDLE project for Exascale with Rick Stevens from Argonne. “CANDLE is endeavoring to build the software environment for solving very large-scale distributed learning problems on the DOE Leadership Computing platforms.”

Video: ExaAM – Transforming Additive Manufacturing through Exascale Simulation

In this video from the HPC User Forum in Detroit, John Turner, Oak Ridge National Laboratory presents: ExaAM – Transforming Additive Manufacturing through Exascale Simulation. “The goal of ExaAM is to develop an AM simulator that will give researchers a tool to determine the best method to print parts with complex geometries and site-specific properties, complemented by real-time, in situ process visualization, analyses and optimization. Coupled with a modern computer-aided design tool, the simulator will allow the routine use of AM to build unique, qualifiable metal alloy parts across many industries relevant to DOE.”