Sign up for our newsletter and get the latest HPC news and analysis.
Send me information from insideHPC:

Facilitate HPC Deployments with Reference Designs for Intel Scalable System Framework

With Intel Scalable System Framework Architecture Specification and Reference Designs, the company is making it easier to accelerate the time to discovery through high-performance computing. The Reference Architectures (RAs) and Reference Designs take Intel Scalable System Framework to the next step—deploying it in ways that will allow users to confidently run their workloads and allow system builders to innovate and differentiate designs

Python and HPC

“In the HPC domain, Python can be used to develop a wide range of applications. While tight loops may still need to be coded in C or FORTRAN, Python can still be used. As more systems become available with coprocessors or accelerators, Python can be used to offload the main CPU and take advantage of the coprocessor. pyMIC is a Python Offload Module for the Intel Xeon Phi Coprocessor and is available at popular open source code repositories.”

Machine Learning and the Intel Xeon Phi Processor

“With up to 72 processing cores, the Intel Xeon Phi processor x200 can accelerate applications tremendously. Each core contains two Advanced Vector Extensions, which speeds up the floating point performance. This is important for machine learning applications which in many cases use the Fused Multiply-Add (FMA) instruction.”

Intel Xeon Phi Coprocessor Design

“The major functionality of the Intel Xeon Phi coprocessor is a chip that does the heavy computation. The current version utilizes up to 16 channels of GDDR5 memory. An interesting notes is that up to 32 memory devices can be used, by using both sides of the motherboard to hold the memory. This doubles the effective memory availability as compared to more conventional designs.”

Making it Easy to Introduce Liquid Cooling to the Data Center

With the release of high wattage processors liquid cooling is becoming a necessity for HPC data centers. Liquid cooling’s ability to provide the direct removal of heat from these high wattage components within the servers is well established. However, there are sometimes concerns from facilities management that need to be addressed prior to liquid cooling’s introduction to the data center.

Intel Xeon Phi Coprocessor Architecture

“High performance systems now typically a host processor and a coprocessor. The role of the coprocessor is to provide the developer and the user the ability to significantly speed up simulations if the algorithm that is used can run with a high degree of parallelization and can take advantage of an SIMD architecture. The Intel Xeon Phi coprocessor is an example of a coprocessor that is used in many HPC systems today.”

High Performance 4K Video Storage, Editing and Rendering

Advancements in video technology have slowly pushed applications like video editing, video rendering and video storage editing into the High Performance Computing world. There are many different video editing programs that can cut, trim, re-sequence, and add sound, transitions and special effects to video. But with the introduction of 4K/8K video, a simple laptop isn’t powerful enough on its own anymore, especially for online editing.

Using Libraries in Offload Mode

The ability to develop applications independent of the hardware availability at run time is a very important concept that enables developers to take advantage of the latest and greatest processing and coprocessing power. Without having to make run time checks on hardware availability is critical to a smooth running HPC environment.

Offloading vs Native Execution on Intel Xeon Phi Coprocessors

“Native execution is good for application that are performing operations that map to parallelism either in threads or vectors. However, running natively on the coprocessor is not ideal when the application must do a lot of I/O or runs large parts of the application in a serial mode. Offloading has its own issues. Asynchronous allocation, copies, and the deallocation of data can be performed but it complex. Another challenge with offloading is that it requires memory blocking. Overall, it is important to understand the application, the workflow within the application and how to use the Intel Xeon Phi coprocessor most effectively.”

Intel® Xeon Phi™ Processor—Highly Parallel Computing Engine for HPC

For decades, Intel has been enabling insight and discovery through its technologies and contributions to parallel computing and High Performance Computing (HPC). Central to the company’s most recent work in HPC is a new design philosophy for clusters and supercomputers called Intel® Scalable System Framework (Intel® SSF), an approach designed to enable sustained, balanced performance as the community pushes towards the Exascale era.