Sign up for our newsletter and get the latest HPC news and analysis.
Send me information from insideHPC:


Intel Releases Optimized Python for HPC

“By implementing popular Python packages such as NumPy, SciPy, scikit-learn, to call the Intel Math Kernel Library (Intel MKL) and the Intel Data Analytics Acceleration Library (Intel DAAL), Python applications are automatically optimized to take advantage of the latest architectures. These libraries have also been optimized for multithreading through calls to the Intel Threading Building Blocks (Intel TBB) library. This means that existing Python applications will perform significantly better merely by switching to the Intel distribution.”

Video: Singularity – Containers for Science, Reproducibility, and HPC

“Explore how Singularity liberates non-privileged users and host resources (such as interconnects, resource managers, file systems, accelerators …) allowing users to take full control to set-up and run in their native environments. This talk explores Singularity how it combines software packaging models with minimalistic containers to create very lightweight application bundles which can be simply executed and contained completely within their environment or be used to interact directly with the host file systems at native speeds. A Singularity application bundle can be as simple as containing a single binary application or as complicated as containing an entire workflow and is as flexible as you will need.”

John Gustafson presents: Beyond Floating Point – Next Generation Computer Arithmetic

“A new data type called a “posit” is designed for direct drop-in replacement for IEEE Standard 754 floats. Unlike unum arithmetic, posits do not require interval-type mathematics or variable size operands, and they round if an answer is inexact, much the way floats do. However, they provide compelling advantages over floats, including simpler hardware implementation that scales from as few as two-bit operands to thousands of bits. For any bit width, they have a larger dynamic range, higher accuracy, better closure under arithmetic operations, and simpler exception-handling.”

Intel Xeon Phi Processor Programming in a Nutshell

In this special guest feature, James Reinders looks at Intel Xeon Phi processors from a programmer’s perspective. “How does a programmer think of Intel Xeon Phi processors? In this brief article, I will convey how I, as a programmer, think of them. In subsequent articles, I will dive a bit more into details of various programming modes, and techniques employed for some key applications. In this article, I will endeavor to not stray into deep details – but rather offer an approachable perspective on how to think about programming for Intel Xeon Phi processors.”

Cray to Develop ARM-based Isambard Supercomputer for UK Met Office

“This is an exciting time in high performance computing,” said Prof Simon McIntosh-Smith, leader of the project and Professor of High Performance Computing at the University of Bristol. “Scientists have a growing choice of potential computer architectures to choose from, including new 64-bit ARM CPUs, graphics processors, and many-core CPUs from Intel. Choosing the best architecture for an application can be a difficult task, so the new Isambard GW4 Tier 2 HPC service aims to provide access to a wide range of the most promising emerging architectures, all using the same software stack.”

Fireside Chat: Dr. Eng Lim Goh on New Trends in HPC Energy Efficiency & Deep Learning

In this video from SC16, Dr. Eng Lim Goh from HPE/SGI discusses new trends in HPC Energy Efficiency and Deep Learning. “SGI’s leadership in data analytics derives from deep expertise in High Performance Computing and over two decades delivering many of the world’s fastest supercomputers. Leveraging this experience and SGI’s innovative shared and distributed memory computing solutions for data analytics enables organizations to achieve greater insight, accelerate innovation, and gain competitive advantage.”

High Performance Interconnects: Assessment & Rankings

In this video from the HPC Advisory Council Spain Conference, Dan Olds from OrionX discusses the High Performance Interconnect (HPI) market landscape, plus provides ratings and rankings of HPI choices today. “In this talk, we’ll take a look at the technologies and performance of high-end networking technology and the coming battle between onloading vs. offloading interconnect architectures.”

Video: The ECP Exascale Computing Project

Paul Messina presented this talk at the HPC User Forum in Austin. “The Exascale Computing Project (ECP) is a collaborative effort of the Office of Science (DOE-SC) and the National Nuclear Security Administration (NNSA). As part of President Obama’s National Strategic Computing initiative, ECP was established to develop a new class of high-performance computing systems whose power will be a thousand times more powerful than today’s petaflop machines.”

Network Co-design as a Gateway to Exascale

Achieving better scalability and performance at Exascale will require full data reach. Without this capability, onload architectures force all data to move to the CPU before allowing any analysis. The ability to analyze data everywhere means that every active component in the cluster will contribute to the computing capabilities and boost performance. In effect, the interconnect will become its own “CPU” and provide in-network computing capabilities.

Interview: Dr. Eng Lim Goh on the Latest Trends in High Performance Data Analytics

In this video from ISC 2016, Dr. Eng Lim Goh from SGI discusses the latest trends in high performance data analytics and machine learning. “Dr. Eng Lim Goh joined SGI in 1989, becoming a chief engineer in 1998 and then chief technology officer in 2000. He oversees technical computing programs with the goal to develop the next generation computer architecture for the new many-core era. His current research interest is in the progression from data intensive computing to analytics, machine learning, artificial specific to general intelligence and autonomous systems. Since joining SGI, he has continued his studies in human perception for user interfaces and virtual and augmented reality.”